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Process analytical applications of Raman spectroscopy 

Jukka Rantanen 

Abstract 

There is an increasing demand for new approaches to understand the chemical and physical phe-
nomena that occur during pharmaceutical unit operations. Obtaining real-time information from
processes opens new perspectives for safer and more efficient manufacture of pharmaceuticals.
Raman spectroscopy provides a molecular level insight into processing, and therefore it is a future pro-
cess analytical tool. In this review, different applications of Raman spectroscopy in the field of process
analysis of pharmaceutical solid dosage forms are summarized. In addition, pitfalls associated with
interfacing to the process environment and challenges within data management are discussed. 

Introduction

Achieving relevant real-time information from multicomponent systems, such as pharma-
ceutical formulations, is not a straightforward task. Consider a typical solid dosage form
with numerous sequential processing steps. There are many possible pitfalls during process-
ing that may critically affect the final product performance. For example, during processing,
an active pharmaceutical ingredient or excipient may be stressed in an environment that is
aqueous or changing in temperature. Focusing analysis on the end product will not enable
the early detection of problems or the complex relations between them. Recently, the US
Food and Drug Administration (FDA) introduced guidance to address this issue. Process
analytical technology (PAT) is a system for developing and implementing new efficient
tools for use during pharmaceutical development, manufacturing and quality assurance
while maintaining or improving the current level of product quality assurance. This guid-
ance categorizes PAT tools into four groups: multivariate tools for design, data acquisition
and analysis, process analysers, process control tools and continuous improvement and know-
ledge management tools. All this work aims to enhance and modernize the pharmaceutical
manufacturing and quality control environment according to the Current Good Manufacturing
Practices (CGMPs) for the 21st century. The principles of this framework are being incorpo-
rated into the ICH guidance on Pharmaceutical Development (Q8). Future challenge will be
the implementation of the right process analytical approach into each specific situation. 

Near infrared (NIR) spectroscopy is a well-recognized tool for modern process analysis (Reich
2005). In some cases, NIR has been used almost as a synonym for PAT. There is, however, a wide
variety of other tools available for sophisticated analysis of pharmaceutical manufacturing envir-
onment. Raman spectroscopy opens a molecular level insight into processing, and therefore it
offers a new way to understand unit operations. In the case of solid dosage forms, it provides fast
non-invasive information from the material stream, even in an aqueous environment. 

The basic principle in Raman spectroscopy is to irradiate a substance with monochro-
matic light and to detect the scattered light with a different frequency to the incident beam.
The differences in the frequencies between the incident and scattered radiation result in
characteristic Raman shifts. The Raman effect is inherently very weak, and in addition to an
intense excitation source, good filters are needed to remove the excitation line from the col-
lected radiation. Samples in the solid, liquid and gaseous states can be analysed with only
minimal (or no) sample preparation. Utilization of this phenomenon has been relatively lim-
ited in the field of pharmaceutical processing due to the high price of instrumentation and
difficulties in process interfacing. Recent developments in the fields of optoelectronics,
computer technology, data transfer and data analysis have enabled the real-time and non-
invasive Raman analysis of pharmaceutical unit operations and, by this means, a molecular level
insight into processing. This will enable process understanding for scientific, risk-managed
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pharmaceutical development, manufacture and quality assur-
ance in accordance with the PAT ideology. In this review,
different applications of Raman spectroscopy in the field of
process analysis of pharmaceutical solid dosage forms are
summarized together with an introduction to challenges with
interfacing into a process environment. 

Raman spectroscopy within pharmaceutical unit 
operations 

There is an increasing number of published studies on the uti-
lization of Raman spectroscopy in the process environment.
Other branches of the chemical industry have also evaluated
the possibilities of Raman spectroscopy (e.g., in the polymer
(Hergeth et al 2003), bioprocess (von Stockar et al 2003) and
food (Mills et al 2005) industries). Vankeirsbilck et al (2002)
have recently reviewed the use of Raman spectroscopy in the
field of pharmaceutics, and a comparison of FT-Raman and
dispersive instruments was made. A recent special issue in
the Journal of Raman Spectroscopy introduced pharmaceuti-
cal applications of Raman spectroscopy (Fini 2004). Threlfall
(1995) and Bugay (2001) have reviewed the use of spectro-
scopic tools for solid-state analysis, and in these reviews they
relate Raman to the other solid-state analysis tools available.
Issues relating quantitative analysis with Raman are
described in a tutorial by Pelletier (2003). The published

work has mainly focused on the solid-state analysis of small
organic compounds, but Raman spectroscopy is also capable
of analysing other types of dosage forms, namely liquids and
disperse systems. Drug compounds in aqueous surroundings
can be analysed, which facilitates the in-situ analysis of these
systems. Raman is also a useful method for probing the rela-
tionship between structure, dynamics and function of biomac-
romolecules (Schmitt & Popp 2006). The increasing amount
of biomacromolecular drugs creates a need for process con-
trol solutions in these challenging process environments. 

The following sections summarize the possibilities of
Raman spectroscopy in the process analysis of pharmaceuti-
cal unit operations related to solid dosage forms. The discus-
sion begins with the synthesis phase and finishes with the
film coating process. A flow chart of unit operations related
to solid dosage forms, together with a summary of potential
applications of Raman spectroscopy, is illustrated in Figure 1. 

Synthesis 
Svensson et al (1999) used Raman spectroscopy in combina-
tion with multivariate techniques for reaction monitoring.
The synthesis and hydrolysis of ethyl acetate was investigated
according to an experimental design. To avoid problems
related to spectral overlapping, they recommend the use of
effective preprocessing (standard normal variate and deriva-
tives) together with principal component analysis (PCA) and

UNIT OPERATION INFORMATION

Process monitoring (progress of chemical reaction),
reaction rate constants, degradation

Process monitoring (both solution and solid),
detection of nucleation, monitoring of solid state
properties

Process induced transitions  (polymorphic transitions,
creation of amorphous material)

Process monitoring (homogeneity of mix)

Process induced transitions (polymorphic transitions,
solvate formation)

Process induced transitions  (polymorphic transitions,
desolvation)

Quantification of active compound, process induced
transitions (pressure induced amorphization)

Process monitoring (amount of polymer -> film thickness),
coating uniformity

Identification

Stability monitoring, identification of counterfeits

SYNTHESIS

CRYSTALLIZATION

BLENDING

GRANULATION

DRYING

TABLETING

TABLET COATING

PACKING

SHELF LIFE

MILLING

Figure 1 Flow chart of unit operations related to the manufacture of solid dosage forms with possible applications of Raman spectroscopy for
process measurement. 

JPP59(2).book  Page 172  Thursday, December 28, 2006  1:54 PM



Process analytical applications of Raman spectroscopy 173

partial least squares (PLS). Rate constants for a model system
were achieved with good agreement with published values. 

Crystallization 
The subsequent processing step is crystallization. This critical
unit operation is performed to produce material with desired
purity, polymorphic composition, surface properties and par-
ticle size and shape distributions. It is crucial to have an in-
depth process signature from the crystallization phase,
because a failure in crystallization results in major difficulties
in secondary manufacturing steps (mixing, granulation, tab-
leting and coating). Crystallization is neither a well under-
stood nor controlled unit operation. The recent case of
ritonavir clearly underlines the need for new tools in the pro-
cess analysis and control of crystallization and also in the
implementation of polymorph screening (Bauer et al 2001).
However, the amount of published work on real-time analysis
of crystallization with pharmaceutics is relatively limited.
Batch crystallizations of pharmaceutics are quite often per-
formed in aqueous media, so Raman spectroscopy is an
extremely useful tool for process control and monitoring pur-
poses. Schwartz & Berglund (1999) monitored in-situ lys-
ozyme concentration changes in hanging drop crystallization.
Changes in polymorphic composition have been monitored
and quantified with in-line Raman spectroscopy (Wang et al
2000; Starbuck et al 2002; Ferrari & Davey 2004; Ono et al
2004; Falcon & Berglund 2004; Hu etal 2005; Schöll etal 2006).
Falcon & Berglund (2004) reported the use of Raman for
real-time monitoring of phenomena related to antisolvent
addition. Hu et al (2005) reported simultaneous monitoring of
solution concentration and polymorphic outcome of the crys-
tallization. Furthermore, solvent-mediated transformations of
the model system were characterized. Raman spectroscopy
can also be used to understand phase transition mechanisms
(Boerrigter et al 2002; Tian et al 2005). Recently, Schöll et al
(2006) reported simultaneous in-situ measurement of particle
size distribution together with liquid and solid phase analysis.
They analysed the liquid phase with attenuated reflection
FTIR spectroscopy and the solid phase with Raman spectros-
copy. This combination enabled the monitoring and
modelling of fundamental phenomena governing the solvent-
mediated transformation of a model compound. Raman
spectroscopy can also be used to identify the mechanisms of
co-crystal formation (Rodríguez-Hornedo et al 2006). These
multiple component crystalline systems may show improved
pharmaceutical properties compared with single component
systems. 

In the solid-state quantification of polymorphic form,
Raman spectroscopy is an ideal candidate. Minimal sample
preparation combined with sensitivity to polymorphism
opens new perspectives for fast and reliable solid-state ana-
lysis (Deeley et al 1991; Langkilde et al 1997; Findlay &
Bugay 1998; Campbell Roberts et al 2002; Al-Zoubi et al
2002; Auer et al 2003; Strachan et al 2004). Both univariate
and multivariate methods have been used for development of
quantitative models. In addition, the use of Raman spectros-
copy for quantification of crystallinity has been reported
(Taylor & Zografi 1998; Murphy et al 2005; Niemelä et al
2005; Nørgaard et al 2005). This may be especially useful in
process monitoring of milling and spray drying, where the

transitions related to crystallinity of material often occur. For
inorganic materials, Raman spectroscopy has been utilized to
identify solid-state transitions during milling (Štefani et al
2006). Recently, Raman has been combined with high-
throughput (HTS) polymorph screening (Peterson et al 2002;
Anderton 2004). There is an increasing demand for early
screening of solid-state forms and also identification of the
most stable form. After a case related to polymorphism of
ritonavir, high-throughput crystallization experiments were
carried out to explore the diversity of ritonavir solid-state
forms (Morissette et al 2003). 

In summary, Raman spectroscopy enables an in-depth
analysis of the crystallization process and it also provides a
route towards molecular level particle design. Furthermore,
Raman spectroscopy can be utilized to monitor and model
solid-state transformations occurring during the following
unit operations. For control of solid-state phenomena within
pharmaceutics, it is crucial to include crystallization as a crit-
ical unit operation in the overall development framework. 

Mixing 
One of the least understood unit operations within solid dos-
age forms is the mixing of powders. Vergote et al (2004) have
reported the use of Raman spectroscopy for in-line monitor-
ing of blending. Raman mapping in combination with near IR
spectral mapping can be used to describe heterogeneous mix-
tures in more detail (Clarke et al 2001). Issues related to data
acquisition and data processing of Raman chemical images
have been recently discussed by Šaši2 et al (2004, 2005).
Wikström et al (2005a) investigated the role of different
sampling optics in the process analysis of solids. They also
reported a multivariate model for monitoring powder mixing.
Interpretation of loadings in a principal component space was
presented on the basis of spectral features observed. 

Granulation 
Granulation is a unit operation needed for many products. In
this process, material might undergo phase transformation
after exposure to solvent, thermal stress or mechanical stress
(Morris et al 2001). Possible phase transitions are polymor-
phic transformations, solvate formation, dehydration from
solvate, production of amorphous regions and crystalliza-
tion of amorphous material. The use of Raman for at-line
(Jørgensen et al 2002) and in-line (Wikström et al 2005b)
analysis of hydrate formation during wet granulation has been
reported. Wikström et al (2005b) used the real-time informa-
tion to verify a model for predicting the transformation kinet-
ics of hydrate formation. Raman spectroscopy also opens an
insight into water–solid interactions in the formulation and,
furthermore, it can be used to understand the role of excipi-
ents in the early development phase. Taylor et al (2001)
investigated the nature of water–polymer interactions for pol-
ymers of pharmaceutical interest. Airaksinen et al (2003)
reported the use of Raman to detect hydrate formation in the
presence of excipients and also the role of the excipients in
the phase transformation. FT-Raman spectroscopy has been
utilized in the evaluation of potential of carrageenans to pro-
tect drugs from polymorphic transformations (Schmidt et al
2003). They reported the detection of both recrystallization of
the amorphous component and dehydration after the tableting
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process. Fechner et al (2003) utilized Raman spectroscopy in
the extrusion–spheronization process environment and they
explained the effect of water on the structure of cellulose dur-
ing this unit operation. Wet granulation is followed by drying,
in which the product is thermally stressed. In this context,
Hausman et al (2005) investigated the use of Raman spectros-
copy to detect solid-state changes during fluid bed drying.
Raman spectroscopy can be further applied for explaining the
mechanisms of thermally induced phase transitions (O’Brien
et al 2004; Miroshnyk et al 2006). 

Tableting 
One of the most attractive possibilities of Raman spectros-
copy, and other possible PAT sensors, is its use for real-time
quantification of active compound in dosage forms. Moving
into a situation where we can analyse, say, every tenth tablet
during production, will open totally new perspectives for
quality assurance and control. Widely-accepted definitions
for real-time release and continuous manufacturing will be
future challenges for pharmaceutical scientists. Raman has
been used for quantification of components in antacid tablets
(Kontoyannis 1995). Wang et al (1997) reported the use of
Raman for direct assay of acetylsalicylic acid and, further, the
analysis of the major degradation product, salicylic acid.
Niemczyk et al (1998) utilized this technique for quantitative
analysis of intact gel capsules and they reported also the ana-
lysis of capsules through blister packs. Vergote et al (2002)
investigated the role of excipients in the quantification of
diltiazem hydrochloride. Johansson & Folestad (2003) have
recently discussed the use Raman spectroscopy for monitor-
ing the tableting process. Another possible aspect to be con-
sidered is the use of Raman for fast analysis of possible
processing induced transformation during tableting process

and for fast verification of polymorphic form of a drug in
final tablets (Taylor & Langkilde 2000; Auer et al 2003).
Again, solid-state properties of both excipients and active
pharmaceutical ingredients can be followed non-invasively.
Recently, Okumura & Otsuka (2005) reported a quantitative
Raman model for the crystallinity of indometacin in a model
tablet formulation. They discussed also the possibility of fur-
ther applying this model for identification and mapping of
pressure-induced amorphization from tablet surfaces. 

Coating 
The subsequent unit operation in many cases is the coating
process, which is usually performed using an aqueous poly-
mer solution. Raman spectroscopy has been utilized in vari-
ous other areas for analysis of film coatings, but not widely in
the field of pharmaceutics. Ringqvist et al (2003) has reported
the use of confocal Raman for analysis of the chemical com-
position in selected small areas of the coating surface.
Romero-Torres et al (2005) utilized a Raman set-up with a
revolving laser focus to analyse spectral features during the
coating process and, further, to quantitatively characterize
coating variations. The same group has developed a quantita-
tive model for coating thickness and, further, evaluated the
fluorescence-inducing role of colorants in the coating solu-
tions to the model performance (Romero-Torres et al 2006). 

Challenges in process analysis with Raman 
spectroscopy 

There exist numerous pitfalls while applying Raman for pro-
cess analysis. Figure 2 summarizes these challenges and the
following discussion presents a few approaches to overcom-
ing them. 

4. Process

1. Nature of active
pharmaceutical ingredient
and excipients 
2. Process dynamics;
integration time and
signal-to-noise level
3. State of matter; solid/
liquid
4. Laser-induced heating

3. Interfacing

1. Probes; non-contact or
immersion optics 
2. Effective sampling
volume 
3. Sight glass; material of
the glass and sticking
of material 

1. Environment

1. Ambient light. 2. Laser; process operator safety. 3. Harsh process environment; dust, solvents,
temperature 

2. Instrument

1. Excitation source;
excitation wavelength
affects fluoresence
2. Detector solution
3. Laser output power
stability
4. Laser wavelength
stability

5. Data management

1. Spectral pretreatment 2. Development of quantitative model (univariate vs. multivariate)
3. Data storage

Figure 2 Factors affecting the interfacing of Raman spectroscopy to a model process environment.
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First, interfacing with process results in problems due to
process environment. We might expose the instrument to
solvents, temperature variation or dust. A harsh process
environment might also affect the laser source power stabil-
ity and laser wavelength shifts. However, proper sealing and
long optical fibres provide a solution for environmental
stresses. Operator safety should also be considered while
working with lasers. In addition, ambient light might cause
some artifacts in the spectral information achieved. A fun-
damental question with process measurements with Raman
is interfacing into process, as it is with all process analytical
tools. Raman measurement can be performed invasively
using immersion probe, or process monitoring can be per-
formed non-invasively using non-contact optics. A basic
problem is obviously to keep the sight glass or, in the case
of immersion probe, the probe head, clean during measure-
ments. Process interfacing is also related to two fundamen-
tal questions: are we measuring a representative part of the
material and do we have the moving sample in focus. In
some cases, it is useful to integrate the probe head into the
sheath with sample withdrawal facility allowing static sam-
ple data collection. This has been reported previously for
NIR application (Green et al 2005), but can also be easily
modified for the Raman probe head. Static sample data col-
lection should also be considered when process dynamics
have a critical effect on the signal-to-noise ratio. 

Another problem related to Raman is the small sampling
area. The penetration depth of lasers used is relatively small,
which results in a small effective sample volume. This can be
altered with optics by increasing the area that is being meas-
ured (spot size of laser). Bell et al (2004) reported quantitative
analysis of tablets with a special focus on possible experi-
mental errors. By increasing the laser spot diameter and the
amount of points measured from the tablet surface, they were
able to find optimal measuring conditions with minimized
prediction error. It is important to consider the original parti-
cle size of the components in a dosage form to optimize the
experimental parameters. Wikström etal (2005a) and Johansson
et al (2005) have also recently evaluated different sampling
devices for in-line measurements. They evaluated the role of
the laser spot size in granule and tablet samples, respectively.
Wikström et al (2005a) reported measuring set-ups with laser
spot sizes of 60, 150 and 3000 microns. In the crystallization
environment, Schöll et al (2006) reported particle-size-related
problems with quantitation of the polymorphic composition. 

Sample heating is a widely recognized problem in Raman
spectroscopy. Moving the sample being measured, which is
the case in process analysis automatically, can minimize
problems related to heating. Johansson et al (2002) investi-
gated the sample heating of pharmaceutical materials and
developed a model to predict the rotation speed needed to
minimize the heating. 

With some materials, a fluorescence background is
observed. This can be decreased by selecting an appropriate
excitation wavelength. Thorley et al (2006) have recently dis-
cussed the role of the wavelength selection on the well-
described fluorescence phenomena with four model drug
compounds and five excitation wavelengths at the UV, visi-
ble and NIR regions. In this study, fluorescence interference
was a potential problem for the visible laser wavelengths,

whereas with both UV and NIR excitation, lower fluores-
cence intensity was observed. However, UV excitation
resulted in more degradation of samples and it was not as sen-
sitive for identification of different polymorphic forms as vis-
ible and NIR excitation. 

After a proper interfacing into the process has been per-
formed, the most challenging part of the work is about to
begin. One has to gain process understanding from the
measured process information. The first step is to identify
the variation in the spectral data and to explain the real
source of this. Spectral pretreatment (e.g. derivatives) or
internal standard is often needed to emphasize the variation
and to facilitate both the band assignment and development
of a quantitative model. Depending on the spectral features
observed, a quantitative model can be developed as a
univariate (e.g. peak ratios) or as a multivariate model
(Pelletier 2003). Spectral features with Raman are typically
well resolved, so univariate analysis provides a robust pro-
cess model reasonably often (Rantanen et al 2005). There
are several sources for experimental errors that should be
evaluated when choosing multivariate modelling (Wolthuis
et al 2006). Šaši2 et al (2004) compared univariate and
multivariate modelling with Raman chemical images.
They obtained better quality chemical images with a prin-
cipal component (PCA)-based approach. Finally, all the
monitoring applications mentioned above will result in a
huge amount of data. Development of a sophisticated data-
base solution is a crucial part of a robust process analytical
solution. 

Conclusions

Raman spectroscopy has matured into an effective tool for
ensuring safe and efficient manufacturing of pharmaceutics.
A lot has happened since Chandrasekhara Venkata Raman
visited Europe in the summer of 1921 and got his first ideas
related to this phenomenon while observing the blue opales-
cence of the Mediterranean Sea (Raman 1930). At present,
we have instruments ready for non-invasive process meas-
urements. Recent developments in the fields of optoelec-
tronics, computer technology, data transfer and data
analysis have enabled the real-time and non-invasive Raman
analysis of pharmaceutical unit operations, and by this
means, a molecular level insight into processing. More
research is needed to understand the full potential of Raman
as a process analytical tool.
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